Chelating Selenium as a Feed Supplement
Introduction
Selenium is a trace element that is naturally present in many foods, added to others, and available as a dietary supplement. Selenium, which is nutritionally essential for humans, is a constituent of more than two dozen selenoproteins that play critical roles in reproduction, thyroid hormone metabolism, DNA synthesis, and protection from oxidative damage and infection [1].
Selenium exists in two forms: inorganic (selenate and selenite) and organic (selenomethionine and selenocysteine) [2]. Both forms can be good dietary sources of selenium [3]. Soils contain inorganic selenites and selenates that plants accumulate and convert to organic forms, mostly selenocysteine and selenomethionine and their methylated derivatives.
Most selenium is in the form of selenomethionine in animal and human tissues, where it can be incorporated nonspecifically with the amino acid methionine in body proteins. Skeletal muscle is the major site of selenium storage, accounting for approximately 28% to 46% of the total selenium pool [3]. Both selenocysteine and selenite are reduced to generate hydrogen selenide, which in turn is converted to selenophosphate for selenoprotein biosynthesis [4].
The most commonly used measures of selenium status are plasma and serum selenium concentrations [1]. Concentrations in blood and urine reflect recent selenium intake. Analyses of hair or nail selenium content can be used to monitor longer-term intakes over months or years. Quantification of one or more selenoproteins (such as glutathione peroxidase and selenoprotein P) is also used as a functional measure of selenium status [3]. Plasma or serum selenium concentrations of 8 micrograms (mcg)/dL or higher in healthy people typically meet needs for selenoprotein synthesis [5].
Recommended Intakes
Intake recommendations for selenium and other nutrients are provided in the Dietary Reference Intakes (DRIs) developed by the Food and Nutrition Board (FNB) at the Institute of Medicine of the National Academies (formerly National Academy of Sciences) [6]. DRI is the general term for a set of reference values used for planning and assessing nutrient intakes of healthy people. These values, which vary by age and sex, include:
- Recommended Dietary Allowance (RDA): Average daily level of intake sufficient to meet the nutrient requirements of nearly all (97%–98%) healthy individuals; often used to plan nutritionally adequate diets for individuals.
- Adequate Intake (AI): Intake at this level is assumed to ensure nutritional adequacy; established when evidence is insufficient to develop an RDA.
- Estimated Average Requirement (EAR): Average daily level of intake estimated to meet the requirements of 50% of healthy individuals; usually used to assess the nutrient intakes of groups of people and to plan nutritionally adequate diets for them; can also be used to assess the nutrient intakes of individuals.
- Tolerable Upper Intake Level (UL): Maximum daily intake unlikely to cause adverse health effects.
Table 1 lists the current RDAs for selenium in mcg. For infants from birth to 12 months, the FNB established an AI for selenium that is equivalent to the mean intake of selenium in healthy, breastfed infants.
Age | Male | Female | Pregnancy | Lactation |
---|---|---|---|---|
Birth to 6 months | 15 mcg* | 15 mcg* | ||
7–12 months | 20 mcg* | 20 mcg* | ||
1–3 years | 20 mcg | 20 mcg | ||
4–8 years | 30 mcg | 30 mcg | ||
9–13 years | 40 mcg | 40 mcg | ||
14–18 years | 55 mcg | 55 mcg | 60 mcg | 70 mcg |
19–50 years | 55 mcg | 55 mcg | 60 mcg | 70 mcg |
51+ years | 55 mcg | 55 mcg |
*Adequate Intake (AI)
Sources of Selenium
Food
Brazil nuts, seafoods, and organ meats are the richest food sources of selenium [1]. Other sources include muscle meats, cereals and other grains, and dairy products. The amount of selenium in drinking water is not nutritionally significant in most geographic regions [2,6]. The major food sources of selenium in the American diet are breads, grains, meat, poultry, fish, and eggs [7].
The amount of selenium in a given type of plant-based food depends on the amount of selenium in the soil and several other factors, such as soil pH, amount of organic matter in the soil, and whether the selenium is in a form that is amenable to plant uptake [2,6,8,9]. As a result, selenium concentrations in plant-based foods vary widely by geographic location [1,2]. For example, according to the U.S. Department of Agriculture Food Composition Database, Brazil nuts have 544 mcg selenium/ounce, but values from other analyses vary widely [10-12].
The selenium content of soil affects the amounts of selenium in the plants that animals eat, so the quantities of selenium in animal products also vary [2,5]. However, selenium concentration in soil has a smaller effect on selenium levels in animal products than in plant-based foods because animals maintain predictable tissue concentrations of selenium through homeostatic mechanisms. Furthermore, formulated livestock feeds generally contain the same levels of selenium.
Several food sources of selenium are listed in Table 2.
Food | Micrograms (mcg) per serving | Percent DV* |
---|---|---|
Brazil nuts, 1 ounce (6–8 nuts) | 544 | 989 |
Tuna, yellowfin, cooked, dry heat, 3 ounces | 92 | 167 |
Halibut, cooked, dry heat, 3 ounces | 47 | 85 |
Sardines, canned in oil, drained solids with bone, 3 ounces | 45 | 82 |
Ham, roasted, 3 ounces | 42 | 76 |
Shrimp, canned, 3 ounces | 40 | 73 |
Macaroni, enriched, cooked, 1 cup | 37 | 67 |
Beef steak, bottom round, roasted, 3 ounces | 33 | 60 |
Turkey, boneless, roasted, 3 ounces | 31 | 56 |
Beef liver, pan fried, 3 ounces | 28 | 51 |
Chicken, light meat, roasted, 3 ounces | 22 | 40 |
Cottage cheese, 1% milkfat, 1 cup | 20 | 36 |
Rice, brown, long-grain, cooked, 1 cup | 19 | 35 |
Beef, ground, 25% fat, broiled, 3 ounces | 18 | 33 |
Egg, hard-boiled, 1 large | 15 | 27 |
Bread, whole-wheat, 1 slice | 13 | 24 |
Baked beans, canned, plain or vegetarian, 1 cup | 13 | 24 |
Oatmeal, regular and quick, unenriched, cooked with water, 1 cup | 13 | 24 |
Milk, 1% fat, 1 cup | 8 | 15 |
Yogurt, plain, low fat, 1 cup | 8 | 15 |
Lentils, boiled, 1 cup | 6 | 11 |
Bread, white, 1 slice | 6 | 11 |
Spinach, frozen, boiled, ½ cup | 5 | 9 |
Spaghetti sauce, marinara, 1 cup | 4 | 7 |
Cashew nuts, dry roasted, 1 ounce | 3 | 5 |
Corn flakes, 1 cup | 2 | 4 |
Green peas, frozen, boiled, ½ cup | 1 | 2 |
Bananas, sliced, ½ cup | 1 | 2 |
Potato, baked, flesh and skin, 1 potato | 1 | 2 |
Peach, yellow, raw, 1 medium | 0 | 0 |
Carrots, raw, ½ cup | 0 | 0 |
Lettuce, iceberg, raw, 1 cup | 0 | 0 |
*DV = Daily Value. The U.S. Food and Drug Administration (FDA) developed DVs to help consumers compare the nutrient contents of foods and dietary supplements within the context of a total diet. The DV for selenium is 55 mcg for adults and children aged 4 years and older [13]. FDA does not require food labels to list selenium content unless selenium has been added to the food. Foods providing 20% or more of the DV are considered to be high sources of a nutrient, but foods providing lower percentages of the DV also contribute to a healthful diet.
The U.S. Department of Agriculture's (USDA's) FoodData Central [10] lists the nutrient content of many foods and provides a comprehensive list of foods containing selenium arranged by nutrient content and by food name.
Dietary Supplements
Selenium is available in multivitamin/multimineral supplements and as a stand-alone supplement, often in the forms of selenomethionine or of selenium-enriched yeast (grown in a high-selenium medium) or as sodium selenite or sodium selenate [2,5,6]. The human body absorbs more than 90% of selenomethionine but only about 50% of selenium from selenite [6].
Few studies have compared the relative absorption and bioavailability of different forms of selenium. In one investigation, 10 groups of selenium-replete subjects were randomly assigned to receive a placebo or either 200 or 600 mcg/day selenium as selenomethionine, sodium selenite, or high-selenium yeast (in which an estimated 75% of selenium was in the form of selenomethionine) for 16 weeks [14]. Selenium bioavailability, based on urinary excretion, was greatest for selenomethionine and lowest for selenite. However, supplementation with any of these forms only affected plasma selenium levels and not glutathione peroxidase activity or selenoprotein P concentration, confirming that study participants were selenium replete before they began taking selenium supplements.
Selenium Intakes and Status
Most Americans consume adequate amounts of selenium. According to an analysis of data from the 2009–2010 National Health and Nutrition Examination Survey (NHANES), the average daily selenium intake in Americans aged 2 years and older from foods is 108.5 mcg and from both foods and supplements is 120.8 mcg [15]. Adult men have higher daily intakes (134 mcg from foods and 151 mcg from foods and supplements) than adult women (93 mcg from foods and 108 mcg from foods and supplements). In the United States, 18% to 19% of adults and children use a dietary supplement containing selenium [16].
According to an analysis of NHANES data from 2003–2004, the mean serum selenium concentration in U.S. adults aged 40 years or older is 13.67 mcg/dL [17]. Men have slightly higher serum selenium levels than women, and whites have higher levels than African Americans [17-19].
Selenium intakes and serum concentrations in the United States and Canada vary somewhat by region because of differences in the amounts of selenium in soil and in local foods consumed [6,20]. For example, concentrations are higher in residents of the Midwestern and Western United States than in the South and Northeast [19,20]. The extensive transport of food typically allows people living in low-selenium areas to obtain sufficient amounts of selenium [6].
Selenium Deficiency
Selenium deficiency produces biochemical changes that might predispose people who experience additional stresses to develop certain illnesses [6]. For example, selenium deficiency in combination with a second stress (possibly a viral infection) leads to Keshan disease, a cardiomyopathy that occurred in parts of China prior to a government-sponsored selenium supplementation program that began in the 1970s [2,5,8,21]. Before the Chinese government supplementation program, adults in the Keshan disease areas had average selenium intakes of no more than 11 mcg/day; intakes of at least 20 mcg/day protect adults from Keshan disease [6].
Selenium deficiency is also associated with male infertility and might play a role in Kashin-Beck disease, a type of osteoarthritis that occurs in certain low-selenium areas of China, Tibet, and Siberia [1,2,5,6,8,22]. Selenium deficiency could exacerbate iodine deficiency, potentially increasing the risk of cretinism in infants [2,5].
Groups at Risk of Selenium Inadequacy
Selenium deficiency is very rare in the United States and Canada, and selenium deficiency in isolation rarely causes overt illness [6]. The following groups are among those most likely to have inadequate intakes of selenium.
People living in selenium-deficient regions
Selenium intakes in North America, even in low-selenium regions, are well above the RDA [19,20]. However, people in some other countries whose diet consists primarily of vegetables grown in low-selenium areas are at risk of deficiency [6]. The lowest selenium intakes in the world are in certain parts of China, where large proportions of the population have a primarily vegetarian diet and soil selenium levels are very low [5]. Average selenium intakes are also low in some European countries, especially among populations consuming vegan diets [5,9,23]. Although intakes in New Zealand were low in the past, they rose after the country increased its importation of high-selenium wheat [9].
People undergoing kidney dialysis
Selenium levels are significantly lower in patients undergoing long-term hemodialysis than in healthy individuals. Hemodialysis removes some selenium from the blood [24]. In addition, hemodialysis patients are at risk of low dietary selenium intakes due to anorexia resulting from uremia and dietary restrictions. Although selenium supplementation increases blood levels in hemodialysis patients, more evidence is needed to determine whether supplements have beneficial clinical effects in these individuals.
People living with HIV
Selenium levels are often low in people living with HIV, possibly because of inadequate intakes (especially in developing countries), excessive losses due to diarrhea, and malabsorption [2,25]. Observational studies have found an association between lower selenium concentrations in people with HIV and an increased risk of cardiomyopathy, death, and, in pregnant women, HIV transmission to offspring and early death of offspring [26-30]. Some randomized clinical trials of selenium supplementation in adults with HIV have found that selenium supplementation can reduce the risk of hospitalization and prevent increases of HIV-1 viral load; preventing HIV-1 viral load progression can lead to increases in numbers of CD4 cells, a type of white blood cell that fights infection [31,32]. However, one trial showed that selenium supplementation in pregnant women can prevent early death in infants but has no effects on maternal viral load or CD4 counts [33,34].
Selenium and Health
This section focuses on four diseases and disorders in which selenium might play a role: cancer, cardiovascular disease, cognitive decline, and thyroid disease.
Cancer
Because of its effects on DNA repair, apoptosis, and the endocrine and immune systems as well as other mechanisms, including its antioxidant properties, selenium might play a role in the prevention of cancer [2,9,35,36].
Epidemiological studies have suggested an inverse association between selenium status and the risk of colorectal, prostate, lung, bladder, skin, esophageal, and gastric cancers [37]. In a Cochrane review of selenium and cancer prevention studies, compared with the lowest category of selenium intake, the highest intake category had a 31% lower cancer risk and 45% lower cancer mortality risk as well as a 33% lower risk of bladder cancer and, in men, 22% lower risk of prostate cancer [37]. The authors found no association between selenium intake and risk of breast cancer. A meta-analysis of 20 epidemiologic studies showed a potential inverse association between toenail, serum, and plasma selenium levels and prostate cancer risk [38].
Randomized controlled trials of selenium supplementation for cancer prevention have yielded conflicting results. The authors of a Cochrane review concluded, based on nine randomized clinical trials, that selenium might help prevent gastrointestinal cancers but noted that these results need to be confirmed in more appropriately designed randomized clinical trials [39]. A secondary analysis of the double-blind, randomized, controlled Nutritional Prevention of Cancer Trial in 1,312 U.S. adults with a history of basal cell or squamous cell carcinomas of the skin found that 200 mcg/day selenium as high-selenium baker's yeast for 6 years was associated with a 52% to 65% lower risk of prostate cancer [40]. This effect was strongest in men in the lowest tertile of selenium concentrations who had a baseline prostate-specific antigen (PSA) level of 4 ng/mL or lower. The Selenium and Vitamin E Cancer Prevention Trial (SELECT), a randomized, controlled trial in 35,533 men aged 50 years or older from the United States, Canada, and Puerto Rico, was discontinued after 5.5 years when analyses showed no association between supplementation with 200 mcg/day selenium with or without 400 international units (IU)/day vitamin E and prostate cancer risk [41]. An additional 1.5 years of follow-up data on participants after they stopped taking the study supplements confirmed the lack of a significant association between selenium supplementation and prostate cancer risk [42].
In 2003, the FDA allowed a qualified health claim on foods and dietary supplements containing selenium to state that while "some scientific evidence suggests that consumption of selenium may reduce the risk of certain forms of cancer... FDA has determined that this evidence is limited and not conclusive" [43]. More research is needed to confirm the relationship between selenium concentrations and cancer risk and to determine whether selenium supplements can help prevent any form of cancer.
Cardiovascular disease
Selenoproteins help prevent the oxidative modification of lipids, reducing inflammation and preventing platelets from aggregating [9]. For these reasons, experts have suggested that selenium supplements could reduce the risk of cardiovascular disease or deaths associated with cardiovascular disease.
The epidemiological data on the role of selenium in cardiovascular disease have yielded conflicting conclusions. Some observational studies have found an inverse association between serum selenium concentrations and risk of hypertension or coronary heart disease. A meta-analysis of 25 observational studies found that people with lower selenium concentrations had a higher risk of coronary heart disease [44]. However, other observational studies failed to find statistically significant links between selenium concentrations and risk of heart disease or cardiac death, or they found that higher selenium concentrations are associated with an increased risk of cardiovascular disease [45-47].
Several clinical trials have examined whether selenium supplementation reduces the risk of cardiovascular disease. In one randomized, placebo-controlled study, for example, 474 healthy adults aged 60 to 74 years with a mean baseline plasma selenium concentration of 9.12 mcg/dL were supplemented with 100, 200, or 300 mcg selenium per day or placebo for 6 months [48]. The supplements lowered levels of total plasma cholesterol and non–high-density-lipoprotein (HDL) plasma cholesterol (total cholesterol levels minus HDL levels) compared with the placebo group, whereas the 300 mcg/day dose significantly increased HDL levels. Other trials have provided evidence that selenium supplementation (200 mcg/day) or supplementation with a multivitamin/multimineral pill containing selenium (100 mcg/day) does not reduce the risk of cardiovascular disease or cardiac death [49-51]. A review of trials of selenium-only supplementation for the primary prevention of cardiovascular disease found no statistically significant effects of selenium on fatal and nonfatal cardiovascular events [52]. Almost all of the subjects in these clinical trials were well-nourished male adults in the United States.
The limited clinical-trial evidence to date does not support the use of selenium supplements for preventing heart disease, particularly in healthy people who already obtain sufficient selenium from food. Additional clinical trials are needed to better understand the contributions of selenium from food and dietary supplements to cardiovascular health.
Cognitive decline
Serum selenium concentrations decline with age. Marginal or deficient selenium concentrations might be associated with age-related declines in brain function, possibly due to decreases in selenium's antioxidant activity [53,54].
The results of observational studies are mixed [55]. In two large studies, participants with lower plasma selenium levels at baseline were more likely to experience cognitive decline over time, although whether the participants in these studies were selenium deficient is not clear [53,56,57]. An analysis of NHANES data on 4,809 elderly people in the United States found no association between serum selenium levels (which ranged from lower than 11.3 to higher than 13.5 mcg/dL) and memory test scores [58].
Researchers have evaluated whether taking an antioxidant supplement containing selenium reduces the risk of cognitive impairment in elderly people. An analysis of data from the Supplémentation en Vitamines et Minéraux Antioxydants (SU.VI.MAX) study on 4,447 participants aged 45 to 60 years in France found that, compared with placebo, daily supplementation with 120 mg ascorbic acid, 30 mg vitamin E, 6 mg beta-carotene, 100 mcg selenium, and 20 mg zinc for 8 years was associated with higher episodic memory and semantic fluency test scores 6 years after the study ended [59]. However, selenium's independent contribution to the observed effects in this study cannot be determined. The authors of a systematic review that included nine placebo-controlled studies concluded that the available clinical evidence is insufficient to determine whether selenium supplements can prevent Alzheimer's disease [55].
More evidence is required to determine whether selenium supplements might help prevent or treat cognitive decline in elderly people.
Thyroid disease
Selenium concentration is higher in the thyroid gland than in any other organ in the body, and, like iodine, selenium has important functions in thyroid hormone synthesis and metabolism.
Epidemiological evidence supporting a relationship between selenium levels and thyroid gland function includes an analysis of data on 1,900 participants in the SU.VI.MAX study indicating an inverse relationship between serum selenium concentrations and thyroid volume, risk of goiter, and risk of thyroid tissue damage in people with mild iodine deficiency [60]. However, these results were statistically significant only in women. A cross-sectional study in 805 adults with mild iodine deficiency in Denmark also found a significant inverse association between serum selenium concentration and thyroid volume in women [61].
Randomized, controlled trials of selenium supplementation in patients with thyroid disease have had varied results. In one randomized, double-blind, placebo-controlled trial, 100, 200, or 300 mcg/day selenium for 6 months in 368 healthy adults aged 60 to 74 years had no effect on thyroid function, even though plasma selenium levels increased significantly [62]. Another randomized, double-blind, placebo-controlled trial compared the effects of 200 mcg/day selenium (as sodium selenite), 1,200 mg/day pentoxifylline (an antiinflammatory agent), or placebo for 6 months in 159 patients with mild Graves' orbitopathy [63]. Compared with patients treated with placebo, those treated with selenium but not pentoxifylline reported a higher quality of life. Furthermore, ophthalmic outcomes improved in 61% of patients in the selenium group compared with 36% of those in the placebo group, and only 7% of the selenium group had mild progression of the disease, compared with 26% of those in the placebo group.
Women with thyroid peroxidase antibodies tend to develop hypothyroxinemia while they are pregnant and thyroid dysfunction and hypothyroidism after giving birth [9]. The authors of a Cochrane review of hypothyroidism interventions during pregnancy concluded, based on a trial that administered supplements containing 200 mcg selenium as selenomethionine daily to 151 pregnant women with thyroid peroxidase antibodies [64], that selenomethionine supplementation in this population is a promising strategy, especially for reducing postpartum thyroiditis [65]. However, the authors called for large randomized clinical trials to provide high-quality evidence of this effect.
Additional research is needed to determine whether selenium supplements can help prevent or treat thyroid disease.
Health Risks from Excessive Selenium
Chronically high intakes of the organic and inorganic forms of selenium have similar effects [6]. Early indicators of excess intake are a garlic odor in the breath and a metallic taste in the mouth. The most common clinical signs of chronically high selenium intakes, or selenosis, are hair and nail loss or brittleness. Other symptoms include lesions of the skin and nervous system, nausea, diarrhea, skin rashes, mottled teeth, fatigue, irritability, and nervous system abnormalities.
As discussed earlier, Brazil nuts contain very high amounts of selenium (68–91 mcg per nut) and could cause selenium toxicity if consumed regularly. Acute selenium toxicity has resulted from the ingestion of misformulated over-the-counter products containing very large amounts of selenium [2,5]. In 2008, for example, 201 people experienced severe adverse reactions from taking a liquid dietary supplement containing 200 times the labeled amount [66]. Acute selenium toxicity can cause severe gastrointestinal and neurological symptoms, acute respiratory distress syndrome, myocardial infarction, hair loss, muscle tenderness, tremors, lightheadedness, facial flushing, kidney failure, cardiac failure, and, in rare cases, death [2,6].
The FNB has established ULs for selenium from food and supplements based on the amounts of selenium that are associated with hair and nail brittleness and loss (see Table 3) [6].
Age | Male | Female | Pregnancy | Lactation |
---|---|---|---|---|
Birth to 6 months | 45 mcg | 45 mcg | ||
7–12 months | 60 mcg | 60 mcg | ||
1–3 years | 90 mcg | 90 mcg | ||
4–8 years | 150 mcg | 150 mcg | ||
9–13 years | 280 mcg | 280 mcg | ||
14–18 years | 400 mcg | 400 mcg | 400 mcg | 400 mcg |
19+ years | 400 mcg | 400 mcg | 400 mcg | 400 mcg |
*Breast milk, formula, and food should be the only sources of selenium for infants.
Interactions with Medications
Selenium can interact with certain medications, and some medications can have an adverse effect on selenium levels. One example is provided below. Individuals taking this and other medications on a regular basis should discuss their selenium status with their healthcare providers.
Cisplatin
Cisplatin, an inorganic platinum chemotherapy agent, is used to treat ovarian, bladder, lung, and other cancers. Cisplatin can reduce selenium levels in hair and serum but whether these reductions have a clinically significant impact is not known [67,68]. Some small studies have shown that selenium supplementation can reduce cisplatin's toxicity [69] but the authors of a Cochrane review concluded that the evidence that selenium supplementation alleviates the side effects of chemotherapy is insufficient [70].
Selenium and Healthful Diets
The federal government's 2020–2025 Dietary Guidelines for Americans notes that "Because foods provide an array of nutrients and other components that have benefits for health, nutritional needs should be met primarily through foods. ... In some cases, fortified foods and dietary supplements are useful when it is not possible otherwise to meet needs for one or more nutrients (e.g., during specific life stages such as pregnancy)."
For more information about building a healthy dietary pattern, refer to the Dietary Guidelines for Americans and the U.S. Department of Agriculture's MyPlate.
The Dietary Guidelines for Americans describes a healthy dietary pattern as one that:
- Includes a variety of vegetables; fruits; grains (at least half whole grains); fat-free and low-fat milk, yogurt, and cheese; and oils.
- Many whole grains and dairy products, including milk and yogurt, are good sources of selenium. Some ready-to-eat breakfast cereals are fortified with selenium, and some fruits and vegetables contain selenium.
- Includes a variety of protein foods such as lean meats; poultry; eggs; seafood; beans, peas, and lentils; nuts and seeds; and soy products.
- Pork, beef, turkey, chicken, fish, shellfish, and eggs contain high amounts of selenium. Some beans and nuts, especially Brazil nuts, contain selenium.
- Limits foods and beverages higher in added sugars, saturated fat, and sodium.
- Limits alcoholic beverages.
- Stays within your daily calorie needs.
References
- Sunde RA. Selenium. In: Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR, eds. Modern Nutrition in Health and Disease. 11th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2012:225-37
- Sunde RA. Selenium. In: Bowman B, Russell R, eds. Present Knowledge in Nutrition. 9th ed. Washington, DC: International Life Sciences Institute; 2006:480-97
- Terry EN, Diamond AM. Selenium. In: Erdman JW, Macdonald IA, Zeisel SH, eds. Present Knowledge in Nutrition. 10th ed. Washington, DC: Wiley-Blackwell; 2012:568-87
- Davis CD. Selenium supplementation and cancer prevention. Curr Nutr Rep 2012;1:16-23.
- Sunde RA. Selenium. In: Coates PM, Betz JM, Blackman MR, et al., eds. Encyclopedia of Dietary Supplements. 2nd ed. London and New York: Informa Healthcare; 2010:711-8
- Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes: Vitamin C, Vitamin E, Selenium, and Carotenoids. National Academy Press, Washington, DC, 2000.
- Chun OK, Floegel A, Chung SJ, Chung CE, Song WO, Koo SI. Estimation of antioxidant intakes from diet and supplements in U.S. adults. J Nutr 2010;140:317-24. [PubMed abstract]
- Rayman MP. Food-chain selenium and human health: emphasis on intake. Br J Nutr 2008;100:254-68. [PubMed abstract]
- Rayman MP. Selenium and human health. Lancet 2012;379:1256-68. [PubMed abstract]
- U.S. Department of Agriculture, Agricultural Research Service. FoodData Central, 2019.
- Thomson CD, Chisholm A, McLachlan SK, Campbell JM. Brazil nuts: an effective way to improve selenium status. Am J Clin Nutr. 2008 Feb;87(2):379-84. [PubMed abstract]
- Bodó ET, Stefánka Z, Ipolyi I, Sörös C, Dernovics M, Fodor P. Preparation, homogeneity and stability studies of a candidate LRM for Se speciation. Anal Bioanal Chem. 2003 Sep;377(1):32-8. [PubMed abstract]
- U.S. Food and Drug Administration. Food Labeling: Revision of the Nutrition and Supplement Facts Labels. 2016.
- Burk RF, Norsworthy BK, Hill KE, Motley AK, Byrne DW. Effects of chemical form of selenium on plasma biomarkers in a high-dose human supplementation trial. Cancer Epidemiol Biomarkers Prev 2006;15:804-10. [PubMed abstract]
- U.S. Department of Agriculture, Agricultural Research Service. What We Eat in America, 2009-2010
- Bailey RL, Gahche JJ, Lentino CV, Dwyer JT, Engel JS, Thomas PR, et al. Dietary supplement use in the United States, 2003-2006. J Nutr 2011;141:261-6. [PubMed abstract]
- Laclaustra M, Stranges S, Navas-Acien A, Ordovas JM, Guallar E. Serum selenium and serum lipids in US adults: National Health and Nutrition Examination Survey (NHANES) 2003-2004. Atherosclerosis 2010;210:643-8. [PubMed abstract]
- Xun P, Bujnowski D, Liu K, Morris JS, Guo Z, He K. Distribution of toenail selenium levels in young adult Caucasians and African Americans in the United States: the CARDIA Trace Element Study. Environ Res 2011;111:514-9. [PubMed abstract]
- Niskar AS, Paschal DC, Kieszak SM, Flegal KM, Bowman B, Gunter EW, et al. Serum selenium levels in the US population: Third National Health and Nutrition Examination Survey, 1988-1994. Biol Trace Elem Res 2003;91:1-10. [PubMed abstract]
- Kafai MR, Ganji V. Sex, age, geographical location, smoking, and alcohol consumption influence serum selenium concentrations in the USA: third National Health and Nutrition Examination Survey, 1988-1994. J Trace Elem Med Biol 2003;17:13-8. [PubMed abstract]
- Chen J. An original discovery: selenium deficiency and Keshan disease (an endemic heart disease). Asia Pac J Clin Nutr 2012;21:320-6. [PubMed abstract]
- Jirong Y, Huiyun P, Zhongzhe Y, Birong D, Weimin L, Ming Y, et al. Sodium selenite for treatment of Kashin-Beck disease in children: a systematic review of randomised controlled trials. Osteoarthritis Cartilage 2012;20:605-13. [PubMed abstract]
- World Health Organization, Food and Agriculture Organization of the United Nations. Vitamin and Mineral Requirements in Human Nutrition. 2004
- Tonelli M, Wiebe N, Hemmelgarn B, Klarenbach S, Field C, Manns B, et al. Trace elements in hemodialysis patients: a systematic review and meta-analysis. BMC Med 2009;7:25. [PubMed abstract]
- Stone CA, Kawai K, Kupka R, Fawzi WW. Role of selenium in HIV infection. Nutr Rev 2010;68:671-81. [PubMed abstract]
- Baum MK, Shor-Posner G, Lai S, Zhang G, Lai H, Fletcher MA, Sauberlich H, Page JB. High risk of HIV-related mortality is associated with selenium deficiency. J Acquir Immune Defic Syndr Hum Retrovirol 1997;15:370-4. [PubMed abstract]
- Twagirumukiza M, Nkeramihigo E, Seminega B, Gasakure E, Boccara F, Barbaro G. Prevalence of dilated cardiomyopathy in HIV-infected African patients not receiving HAART: a multicenter, observational, prospective, cohort study in Rwanda. Curr HIV Res 2007;5:129-37. [PubMed abstract]
- Campa A, Shor-Posner G, Indacoche F, Zhang G, Lai H, Asthana D, Scott GB, Baum MK. Mortality risk in selenium-deficient HIV-positive children. J Acquir Immune Defic Syndr Hum Retrovirol 1999;15:508-13. [PubMed abstract]
- Kupka R, Msamanga GI, Spiegelman D, Rifai N, Hunter DJ, Fawzi WW. Selenium levels in relation to morbidity and mortality among children born to HIV-infected mothers. Eur J Clin Nutr 2005;59:1250-8. [PubMed abstract]
- Kupka R, Garland M, Msamanga G, Spiegelman D, Hunter D, Fawzi W. Selenium status, pregnancy outcomes, and mother-to-child transmission of HIV-1. J Acquir Immune Defic Syndr 2005;39:203-10. [PubMed abstract]
- Burbano X, Miguez-Burbano MJ, McCollister K, Zhang G, Rodriguez A, Ruiz P, et al. Impact of a selenium chemoprevention clinical trial on hospital admissions of HIV-infected participants. HIV Clin Trials 2002;3:483-91. [PubMed abstract]
- Hurwitz BE, Klaus JR, Llabre MM, Gonzalez A, Lawrence PJ, Maher KJ, et al. Suppression of human immunodeficiency virus type 1 viral load with selenium supplementation: a randomized controlled trial. Arch Intern Med 2007;167:148-54. [PubMed abstract]
- Kupka R, Mugusi F, Aboud S, Msamanga GI, Finkelstein JL, Spiegelman D, et al. Randomized, double-blind, placebo-controlled trial of selenium supplements among HIV-infected pregnant women in Tanzania: effects on maternal and child outcomes. Am J Clin Nutr 2008;87:1802-8. [PubMed abstract]
- Kupka R, Mugusi F, Aboud S, Hertzmark E, Spiegelman D, Fawzi WW. Effect of selenium supplements on hemoglobin concentration and morbidity among HIV-1-infected Tanzanian women. Clin Infect Dis 2009;48:1475-8. [PubMed abstract]
- Allen NE, Appleby PN, Roddam AW, Tjonneland A, Johnsen NF, Overvad K, et al. Plasma selenium concentration and prostate cancer risk: results from the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr 2008;88:1567-75. [PubMed abstract]
- Combs GF, Jr and Gray WP. Chemopreventive agents: Selenium. Pharmacol Ther 1998; 79:179-92.
- Dennert G, Zwahlen M, Brinkman M, Vinceti M, Zeegers MP, Horneber M. Selenium for preventing cancer. Cochrane Database Syst Rev 2011:CD005195. [PubMed abstract]
- Brinkman M, Reulen RC, Kellen E, Buntinx F, Zeegers MP. Are men with low selenium levels at increased risk of prostate cancer? Eur J Cancer 2006;42:2463-71. [PubMed abstract]
- Bjelakovic G, Nikolova D, Simonetti RG, Gluud C. Systematic review: primary and secondary prevention of gastrointestinal cancers with antioxidant supplements. Aliment Pharmacol Ther 2008;28:689-703. [PubMed abstract]
- Duffield-Lillico AJ, Dalkin BL, Reid ME, Turnbull BW, Slate EH, Jacobs ET, et al. Selenium supplementation, baseline plasma selenium status and incidence of prostate cancer: an analysis of the complete treatment period of the Nutritional Prevention of Cancer Trial. BJU Int 2003;91:608-12. [PubMed abstract]
- Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, et al. The effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2009;301:39-51.
- Klein EA, Thompson Jr. IM, Tangen CM, Crowley JJ, Lucia MS, Goodman PJ, et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2011;306:1549-1556. [PubMed abstract]
- U.S. Food and Drug Administration. Qualified Health Claims: Letters of Enforcement Discretion.
- Flores-Mateo G, Navas-Acien A, Pastor-Barriuso R, Guallar E. Selenium and coronary heart disease: a meta-analysis. Am J Clin Nutr 2006;84:762-73. [PubMed abstract]
- Xun P, Liu K, Morris JS, Daviglus ML, He K. Longitudinal association between toenail selenium levels and measures of subclinical atherosclerosis: the CARDIA trace element study. Atherosclerosis 2010;210:662-7. [PubMed abstract]
- Bleys J, Navas-Acien A, Guallar E. Serum selenium levels and all-cause, cancer, and cardiovascular mortality among US adults. Arch Intern Med 2008;168:404-10. [PubMed abstract]
- Bleys J, Navas-Acien A, Laclaustra M, Pastor-Barriuso R, Menke A, Ordovas J, et al. Serum selenium and peripheral arterial disease: results from the national health and nutrition examination survey, 2003-2004. Am J Epidemiol 2009;169:996-1003. [PubMed abstract]
- Rayman MP, Stranges S, Griffin BA, Pastor-Barriuso R, Guallar E. Effect of supplementation with high-selenium yeast on plasma lipids: a randomized trial. Ann Intern Med 2011;154:656-65. [PubMed abstract]
- Hercberg S, Galan P, Preziosi P, Bertrais S, Mennen L, Malvy D, et al. The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med 2004;164:2335-42. [PubMed abstract]
- Hercberg S, Kesse-Guyot E, Druesne-Pecollo N, Touvier M, Favier A, Latino-Martel P, et al. Incidence of cancers, ischemic cardiovascular diseases and mortality during 5-year follow-up after stopping antioxidant vitamins and minerals supplements: a postintervention follow-up in the SU.VI.MAX Study. Int J Cancer 2010;127:1875-81. [PubMed abstract]
- Stranges S, Marshall JR, Trevisan M, Natarajan R, Donahue RP, Combs GF, et al. Effects of selenium supplementation on cardiovascular disease incidence and mortality: secondary analyses in a randomized clinical trial. Am J Epidemiol 2006;163:694-9. [PubMed abstract]
- Rees K, Hartley L, Day C, Flowers N, Clarke A, Stranges S. Selenium supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013 Jan 31;(1):CD009671. [PubMed abstract]
- Akbaraly TN, Hininger-Favier I, Carriere I, Arnaud J, Gourlet V, Roussel AM, et al. Plasma selenium over time and cognitive decline in the elderly. Epidemiology 2007;18:52-8. [PubMed abstract]
- Shahar A, Patel KV, Semba RD, Bandinelli S, Shahar DR, Ferrucci L, et al. Plasma selenium is positively related to performance in neurological tasks assessing coordination and motor speed. Mov Disord 2010;25:1909-15. [PubMed abstract]
- Loef M, Schrauzer GN, Walach H. Selenium and Alzheimer's disease: a systematic review. J Alzheimers Dis 2011;26:81-104. [PubMed abstract]
- Berr C, Balansard B, Arnaud J, Roussel AM, Alpérovitch A. Cognitive decline is associated with systemic oxidative stress: the EVA study. Etude du Vieillissement Artériel. J Am Geriatr Soc 2000;48:1285-91. [PubMed abstract]
- Gao S, Jin Y, Hall KS, Liang C, Unverzagt FW, Ji R, et al. Selenium level and cognitive function in rural elderly Chinese. Am J Epidemiol 2007;165:955-65. [PubMed abstract]
- Perkins AJ, Hendrie HC, Callahan CM, Gao S, Unverzagt FW, Xu Y, et al. Association of antioxidants with memory in a multiethnic elderly sample using the Third National Health and Nutrition Examination Survey. Am J Epidemiol 1999;150:37-44. [PubMed abstract]
- Kesse-Guyot E, Fezeu L, Jeandel C, Ferry M, Andreeva V, Amieva H, et al. French adults' cognitive performance after daily supplementation with antioxidant vitamins and minerals at nutritional doses: a post hoc analysis of the Supplementation in Vitamins and Mineral Antioxidants (SU.VI.MAX) trial. Am J Clin Nutr 2011;94:892-9. [PubMed abstract]
- Derumeaux H, Valeix P, Castetbon K, Bensimon M, Boutron-Ruault MC, Arnaud J, Hercberg S. Association of selenium with thyroid volume and echostructure in 35- to 60-year-old French adults. Eur J Endocrinol 2003;148(3):309-15.
- Rasmussen LB, Schomburg L, Kohrle J, Pedersen IB, Hollenbach B, Hog A, et al. Selenium status, thyroid volume, and multiple nodule formation in an area with mild iodine deficiency. Eur J Endocrinol 2011;164:585-90. [PubMed abstract]
- Rayman MP, Thompson AJ, Bekaert B, Catterick J, Galassini R, Hall E, et al. Randomized controlled trial of the effect of selenium supplementation on thyroid function in the elderly in the United Kingdom. Am J Clin Nutr 2008;87:370-8. [PubMed abstract]
- Marcocci C, Kahaly GJ, Krassas GE, Bartalena L, Prummel M, Stahl M, et al. Selenium and the course of mild Graves' orbitopathy. N Engl J Med 2011;364:1920-31. [PubMed abstract]
- Negro R, Greco G, Mangieri T, Pezzarossa A, Dazzi D, Hassan H. The influence of selenium supplementation on postpartum thyroid status in pregnant women with thyroid peroxidase autoantibodies. J Clin Endocrinol Metab 2007;92:1263-8. [PubMed abstract]
- Reid SM, Middleton P, Cossich MC, Crowther CA. Interventions for clinical and subclinical hypothyroidism in pregnancy. Cochrane Database Syst Rev 2010:CD007752. [PubMed abstract]
- MacFarquhar JK, Broussard DL, Melstrom P, Hutchinson R, Wolkin A, Martin C, et al. Acute selenium toxicity associated with a dietary supplement. Arch Intern Med 2010;170:256-61. [PubMed abstract]
- Sieja K, Talerczyk M. Selenium as an element in the treatment of ovarian cancer in women receiving chemotherapy. Gynecol Oncol 2004;93:320-7. [PubMed abstract]
- Vernie LN, de Goeij JJ, Zegers C, de Vries M, Baldew GS, McVie JG. Cisplatin-induced changes of selenium levels and glutathione peroxidase activities in blood of testis tumor patients. Cancer Lett 1988;40:83-91. [PubMed abstract]
- Hu YJ, Chen Y, Zhang YQ, Zhou MZ, Song XM, Zhang BZ, et al. The protective role of selenium on the toxicity of cisplatin-contained chemotherapy regimen in cancer patients. Biol Trace Elem Res 1997;56:331-41. [PubMed abstract]
- Dennert G, Horneber M. Selenium for alleviating the side effects of chemotherapy, radiotherapy and surgery in cancer patients. Cochrane Database Syst Rev 2006:CD005037. [PubMed abstract]
- U.S. Department of Agriculture, U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2010. 7th Edition. Washington, DC; 2010
Disclaimer
This fact sheet by the National Institutes of Health (NIH) Office of Dietary Supplements (ODS) provides information that should not take the place of medical advice. We encourage you to talk to your healthcare providers (doctor, registered dietitian, pharmacist, etc.) about your interest in, questions about, or use of dietary supplements and what may be best for your overall health. Any mention in this publication of a specific product or service, or recommendation from an organization or professional society, does not represent an endorsement by ODS of that product, service, or expert advice.
Source: https://ods.od.nih.gov/factsheets/selenium-healthprofessional/
Post a Comment for "Chelating Selenium as a Feed Supplement"